
Learning to Optimize Halide with Tree Search and Random Programs

ANDREW ADAMS, Facebook AI Research
KARIMA MA, UC Berkeley
LUKE ANDERSON,MIT CSAIL
RIYADH BAGHDADI,MIT CSAIL
TZU-MAO LI,MIT CSAIL
MICHAËL GHARBI, Adobe
BENOIT STEINER, Facebook AI Research
STEVEN JOHNSON, Google
KAYVON FATAHALIAN, Stanford University
FRÉDO DURAND,MIT CSAIL
JONATHAN RAGAN-KELLEY, UC Berkeley

We present a new algorithm to automatically schedule Halide programs
for high-performance image processing and deep learning. We significantly
improve upon the performance of previous methods, which considered a lim-
ited subset of schedules. We define a parameterization of possible schedules
much larger than prior methods and use a variant of beam search to search
over it. The search optimizes runtime predicted by a cost model based on a
combination of new derived features and machine learning. We train the
cost model by generating and featurizing hundreds of thousands of random
programs and schedules. We show that this approach operates effectively
with or without autotuning. It produces schedules which are on average
almost twice as fast as the existing Halide autoscheduler without autotun-
ing, or more than twice as fast with, and is the first automatic scheduling
algorithm to significantly outperform human experts on average.

CCS Concepts: • Computing methodologies → Image processing; •
Software and its engineering→ Domain specific languages.

Additional Key Words and Phrases: optimizing compilers, Halide

ACM Reference Format:
Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li,
Michaël Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Frédo
Durand, and Jonathan Ragan-Kelley. 2019. Learning to Optimize Halide with
Tree Search and Random Programs. ACM Trans. Graph. 38, 4, Article 121
(July 2019), 12 pages. https://doi.org/10.1145/3306346.3322967

Authors’ addresses: Andrew Adams, Facebook AI Research, andrew.b.adams@gmail.
com; Karima Ma, UC Berkeley, karima_ma@berkeley.edu; Luke Anderson, MIT CSAIL,
lukea@mit.edu; Riyadh Baghdadi, MIT CSAIL, baghdadi@mit.edu; Tzu-Mao Li, MIT
CSAIL, tzumao@mit.edu; Michaël Gharbi, Adobe, mgharbi@adobe.com; Benoit Steiner,
Facebook AI Research, benoitsteiner@fb.com; Steven Johnson, Google, srj@google.com;
Kayvon Fatahalian, Stanford University, kayvonf@cs.stanford.edu; Frédo Durand, MIT
CSAIL, fredo@csail.mit.edu; Jonathan Ragan-Kelley, UC Berkeley, jrk@berkeley.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2019/7-ART121 $15.00
https://doi.org/10.1145/3306346.3322967

tree search
on schedules

training

random Halide
algorithms

input Halide
algorithm

importance
sample

with autotuning

direct

plausible
schedules

train

autoscheduling

benchmark
performance

random Halide
algorithms

guides

learned
cost model

tree search
on schedules

importance
sample

search optimum

fine-tune

guides

learned
cost model

plausible
schedules

fast
schedule

fast
schedule

benchmark
performance

Fig. 1. We generate schedules for Halide programs using tree search over
the space of schedules (Sec. 3) guided by a learned cost model and optional
autotuning (Sec. 4). The cost model is trained by benchmarking thousands of
randomly-generated Halide programs and schedules (Sec. 5). The resulting
code significantly outperforms prior work and human experts (Sec. 6).

1 INTRODUCTION
Image processing and deep learning are pervasive. They are com-
putationally intense, and implementations often have to be highly
optimized by experts, at great cost, to be usable in practice. The
Halide programming language has proven to be a powerful tool for
this task because it separates the algorithm — what you want to
compute — from the schedule — how you want to compute it, includ-
ing choices about memory locality, redundant computation, and
parallelism [Ragan-Kelley et al. 2012, 2013]. While Halide makes it
easy to try different schedules, writing schedules that achieve high
performance is hard: it requires expertise in hardware architecture
and optimization, and even then, the space of possible schedules is
enormous and their performance can be difficult to predict.

Automating the synthesis of high-performance schedules is sorely
needed, but prior methods are limited in multiple ways [Mullapudi
et al. 2016, 2015; Sioutas et al. 2018]. First, by design they only con-
sider a small subset of all possible schedules. They generally work by
modestly generalizing specific schedule templates or idioms, which
are difficult to compose or extend to capture the countless other
potentially fruitful choices for each application and target architec-
ture. Second, they explore their key choices using specialized search
procedures, which are tightly coupled to the family of schedules
they consider. Third, they navigate this space using hand-designed
cost models which struggle to accurately predict performance on
real machines. These cost models can be tuned to guide the search to
good performance on a few specific applications at a time, but they

ACM Trans. Graph., Vol. 38, No. 4, Article 121. Publication date: July 2019.

https://doi.org/10.1145/3306346.3322967
https://doi.org/10.1145/3306346.3322967

121:2 • Adams et al.

struggle to generalize, often producing results many times slower
than the best schedules in their search space on others.
In this paper, we present a new algorithm to automatically find

high performance schedules for Halide programs that significantly
outperforms previous automatic schedulers (Fig. 1). This is enabled
by a number of key contributions, including:
• a new parameterization of the search space that can efficiently

enumerate a much larger set of valid schedules than prior meth-
ods, increasing the available high-performance options;

• a more general search algorithm with backtracking and coarse-
to-fine refinement;

• a new cost model that combines symbolic analysis with machine
learning to predict performance;

• a robust methodology which trains the cost model on an infinite
population of random programs;

• the optional use of sampling and benchmarking (autotuning) to
further improve performance given extra time.

On a diverse set of applications spanning both imaging and learning,
our algorithm outperforms the production Halide autoscheduler
[Mullapudi et al. 2016] by 75% on averagewith no autotuning, and up
to 135% on average with a few hours per application of autotuning.
It is also more robust, never significantly underperforming the prior
method, but at times outperforming it by an order of magnitude.
With these results, it is the first automatic scheduling algorithm
demonstrated to not just approach but significantly outperform
human experts on average.

1.1 Our Approach
Parameterizing schedules. We define a general parameterization

of the choice space which naturally subsumes most core Halide
scheduling choices (Sec. 3). We enumerate choices from the output
of a program backwards to the input, for each stage choosing both
the granularity at which it will be computed with respect to its con-
sumers, and how its own iteration space will be tiled across threads
and SIMD lanes, and laid out in memory. This parameterization in-
cludes arbitrarily-nested loop tilings, with stages computed (fused)
and stored (reused) at any granularity within them, encompassing
important optimizations like line-buffering [Hegarty et al. 2014] not
possible in most prior approaches. It mirrors the definition of the
core scheduling operators themselves, makes both extending the
space and reasoning about validity easy and local, and is suitable
for generic tree search methods.

Search. We search this space using a general backtracking tree
search algorithm based on beam search [Reddy 1977] (Sec. 3.2). We
extend the classic algorithm to operate in a coarse-to-fine fashion,
which we find provides more efficient backtracking over long-range
decisions on this problem.

A hybrid learned cost model. We drive the search using a new cost
model which combines symbolic analysis with learning to more
accurately predict performance on real machines (Sec. 4). This is
critical because our large search space increases the demands on
the cost model: it includes not only many better schedules than

prior methods, but also many worse choices. We featurize interme-
diate choices by treating the stages scheduled up to that point as a
complete, smaller program, allowing the cost model to reason only
about complete programs.

Training on random programs. We train the cost model to predict
the benchmarked performance, on a given target architecture, of
hundreds of thousands of random algorithms and schedules drawn
from a distribution representative of key patterns in real programs
(Sec. 5). This process is both automatic and generalizesmore robustly
than fitting to specific benchmarks, as most compilers do.

Trading off compile time for performance. We configurably scale
our search based on the available compile time, from seconds to
hours, to efficiently exploit both the fast cost model and ground-
truth benchmarking (Sec. 4.3). Varying the beam size interpolates
between fast greedy search and best-first. Given more time, ran-
domizing the search by importance sampling the cost model, we
can generate a near-infinite distribution of promising schedules.
Compiling and benchmarking these to measure ground truth perfor-
mance, in tens of minutes we can autotune to find better results than
the model alone. Or, with hours to sample and benchmark, we can
also iteratively fine-tune the cost model on the samples measured
so far to accelerate autotuning.

Full code for the algorithm, random program generator, and test
applications is available at https://autoscheduler2019.halide.io/.

2 RELATED WORK
There have been several prior attempts to automatically schedule
Halide programs. However, these efforts either relied on search-
ing a small space of schedule templates that exclude many higher-
performance choices, or struggled to scale to nontrivial programs.
The original Halide autotuner [Ragan-Kelley et al. 2013] com-

bined heuristic schedule templates with genetic search over random
schedule rewrites, and relied entirely on ground-truth benchmark-
ing to measure performance. It produced some results competi-
tive with hand-written code, but finding schedules could take days
for moderately-sized pipelines. Both its heuristics and its random
rewrites frequently produced invalid schedules and were difficult to
generalize. A simpler version of this approach was reimplemented
in the OpenTuner framework [Ansel et al. 2014], but it can only
effectively schedule the simplest pipelines [Mullapudi et al. 2015].
The current autoscheduler shipped as part of Halide is derived

from Mullapudi et al.’s work [2016]. It performs greedy search over
the possible applications of a simple schedule template using a
simple cost model. This allows it to run quickly, with no benchmark-
ing at all, but it only considers a single level of tiling and fusion,
combined with fixed heuristic choices for things like parallelism,
vectorization, and unrolling. This excludes many useful schedules
(such as multi-level tiling and line-buffering), and has proven very
difficult to generalize across applications or to new schedules. It can
be autotuned by sampling the space of its three cost model parame-
ters, but cannot sample its entire schedule space as our autotuner
does.
The polyhedral compiler PolyMage [Mullapudi et al. 2015] uses

an algorithm similar to that of the current Halide autoscheduler.

ACM Trans. Graph., Vol. 38, No. 4, Article 121. Publication date: July 2019.

https://autoscheduler2019.halide.io/

Learning to Optimize Halide with Tree Search and Random Programs • 121:3

This has also been extended with backtracking and a richer cost
model to some benefit [Jangda and Bondhugula 2018], but with-
out changing the fundamentally restricted search space. Sioutas
et al. [2018] improved local scheduling of individual Halide opera-
tions by defining a richer manual cost model to capture cache and
prefetcher behaviour on CPUs. This was built on to schedule entire
algorithms using a similar cost model coupled with a backtrack-
ing search over fusion strategies [Sioutas et al. 2019]. The space
of schedules considered was broader than prior work in that it in-
cluded sliding window strategies in addition to fusion in tiles. The
space we search is broader still, and our cost model is more complex
and learned, but we took substantial inspiration from their work in
designing key terms in our model and featurization.
Many other polyhedral compilers use variants of the Pluto al-

gorithm for automatic scheduling of affine loop nests [Baghdadi
et al. 2015; Bondhugula et al. 2008; Grosser et al. 2012; Vasilache
et al. 2018]. They formalize as an integer linear program (ILP) the
problem of finding an affine loop transformation which maximizes
outer loop parallelism and minimizes statement-to-statement reuse
distance. The resulting ILP can be solved exactly, but the schedules
considered exclude many key choices offered by Halide (introduc-
ing redundant computation to improve locality and parallelism),
and the implicit cost model is only weakly correlated with actual
performance. Changing either makes the problem no longer an ILP
and intractable to solve.

TVM [Chen et al. 2018a] follows a similar philosophy to ours, com-
bining generic search with learning and benchmarking to find good
schedules [Chen et al. 2018b], but supports only semi-automatic
scheduling: search is automated, but the search space must be man-
ually defined by the programmer for each algorithm (“operator” in
the parlance of deep learning frameworks) as a template. They also
focus on locally optimizing individual operators in isolation, where
we emphasize exploring long-range fusion through large programs.

There have also been many other attempts to use machine learn-
ing to improve prediction in compilers [Ashouri et al. 2018]. This
includes predicting the best order for optimization passes [Fursin
et al. 2008], the best tile sizes [Rahman et al. 2010], whether kernels
should be mapped to CPUs or GPUs [Cummins et al. 2017], and the
throughput of straight-line x86 code [Mendis et al. 2018].

3 NAVIGATING THE HALIDE SCHEDULING SPACE
To better understand the choice space we define, we begin with a
brief introduction to core ideas in Halide.
A Halide program specifies an algorithm (which we often call

a pipeline) as a directed acyclic graph (DAG) of stages producing
multidimensional arrays of values. Each stage is defined as a func-
tion from any coordinate in an infinite grid to the value at that
coordinate. Each stage can consume data from arbitrary points in
prior stages, but — unlike in traditional languages like C++ — the
order of evaluation of elements within each stage and across stages,
their placement into arrays in memory, and even how many (and
which) should be computed, are unspecified.

Consider a simple program:
h(x, y) = ...;
g(x, y) = pow(h(x, y), 1.8);
f(x, y) = g(x, y−1) + g(x, y+1);

It has three stages, with each point in f depending on a small window
in g, which in turn depends on h. To evaluate this pipeline, we need
to ask for a desired region of the output (say, [0,w] × [0,h]). Given
this, the Halide compiler can infer what regions are required of

for g.y from 0 to 1:
 for g.x from 0 to g.w:

for f.y from 0 to h:
 for f.x from 0 to w:

for f.y2 from 0 to 4:
 for f.x2 from 0 to 2:

for f.y3 from 0 to 1:
 simd for f.x3 from 0 to 8:

parallel for f.y1 from 0 to h/4:
 parallel for f.x1 from 0 to w/16:

for g.y from 0 to g.h:
 for g.x from 0 to g.w:

allocate g[g.w, g.h]

for f.y2 from 0 to 4:
 for f.x2 from 0 to 2:

for f.y3 from 0 to 1:
 simd for f.x3 from 0 to 8:

parallel for f.y1 from 0 to h/4:
 parallel for f.x1 from 0 to w/16:

allocate g[g.w, g.h]

for f.y2 from 0 to 4:
 for f.x2 from 0 to 2:

parallel for f.y1 from 0 to h/4:
 parallel for f.x1 from 0 to w/16:

for g.y from 0 to g.h:
 for g.x from 0 to g.w:

allocate g[g.w, g.h]

for f.y2 from 0 to 4:
 for f.x2 from 0 to 1:

for f.y3 from 0 to 1:
 for f.x3 from 0 to 2:

for f.y4 from 0 to 1:
 simd for f.x4 from 0 to 8:

parallel for f.y1 from 0 to h/4:
 parallel for f.x1 from 0 to w/16:

for f.y3 from 0 to 1:
 simd for f.x3 from 0 to 8:

(a) compute f in row-major order

(b) compute f in parallel, vectorized, nested tiles

(c) compute g at root

(e) compute g incrementally within tiles of f

(d) compute g at tiles of f

intra-stage
order

cross-stage
granularity

Fig. 2. Loop nests corresponding to different scheduling choices. Top: two
different schedules of the same function, f, over the interval [0, w] × [0, h].
(a) is a simple row-major loop nest, while (b) has been tiled two levels
deep, with the outermost tile loop mapped across parallel threads, and
the innermost across the lanes of a SIMD vector. Bottom: three different
cross-stage granularity choices for the stage g, given a two-level tiling of its
consumer f. The structure of the loop over g does not change, but the size
of the regions computed and stored varies depending on the granularity.

ACM Trans. Graph., Vol. 38, No. 4, Article 121. Publication date: July 2019.

121:4 • Adams et al.

the earlier stages g and h (here, [0,w] × [−1,h + 1]), but we still do
not know in what order all of these points should be computed,
nor where they should be stored in memory. This is defined by the
schedule.

A Halide schedule specifies how the computation of the pipeline
should be compiled into a concrete loop nest which evaluates all
of the points necessary in each stage to compute the requested
output. Each stage is computed over a multidimensional rectangular
region (a dense n-dimensional array or “tensor”), and the size to be
computed (and the size of the corresponding memory allocation)
is inferred by the compiler. The syntax of the Halide scheduling
language is unimportant, but it is critical to understand the key
choices it defines.
The generated loop nest is driven most fundamentally by two

sets of choices:

Intra-stage order. We first choose in what order to evaluate the
region of points within each stage. This includes arbitrary dimension
order and tiling across then-dimensional domain of that stage. Given
this ordering and decomposition, any of the resulting loops can also
be chosen to be processed in parallel across threads or SIMD lanes
(or, equivalently, GPU blocks and threads), or unrolled. Examples
of both a trivial row-major loop nest and a tiled parallel loop nest
over the domain of f are shown in Fig. 2.

Cross-stage granularity. Given a separate loop nest over the local
domain of each function, we then choose at what granularity each
stage should be computed with respect to its consumers — how
their loop nests should be combined. For example, when should we
compute parts of g with respect to the parts of f that use them? The
entire required region of a stage can be computed before moving on
to the next stage (Fig. 2, lower top), or it can be computed over just
the region required at any inner loop within its consumer’s domain
(Fig. 2, lower middle). At the extreme, it can be inlined directly into
the computation of each point in its consumer. Finally, the required
region of a stage can be computed incrementally, reusing values
computed in previous iterations and stored at a coarser granularity
(Fig. 2, lower bottom), producing a sliding window or “line-buffered”
pattern.

The intra-stage order and decomposition interact with these cross-
stage choices because they create different potential granularities
at which computation and storage can be placed. Different choices
about order and granularity make different tradeoffs between paral-
lelism, locality, and the total amount of work performed.

3.1 Parameterizing the Space of Schedules
In order to search over them, we represent schedules directly as
specialized loop nests. A loop nest is defined by a set of choices very
similar to the visual language above. It contains, for each stage:

• a nested set of n-dimensional tilings;
• a compute and storage granularity;
• annotations of any levels of the tiling to be unrolled, or spread
across parallel threads or SIMD lanes.

(For simplicity we capture arbitrary loop splittings and reorder-
ings in a uniform way as recursive tilings, potentially including
degenerate tiles of size 1 in some dimensions.)

Using this representation, we enumerate possible scheduling
choices one stage at a time, starting from the last stage in the pro-
gram and recursing back to the input. For each stage, we make two
successive choices, each of which introduces new tilings:

(1) We select a compute and storage granularity at which to insert
the new stage, optionally adding an extra level of tiling to
the consuming stage’s existing loop nest to create additional
options.

(2) We add inner and outer tilings to the newly-added stage for
parallelism. The outer tiling is annotated to be spread across
parallel threads, and the inner tiling across SIMD lanes.

Each tiling added can take on arbitrarily many different tile sizes,
yielding numerous successor states from each decision, and the
recursion terminates when all stages have been scheduled (2n steps
for a program of n stages). Fig. 3 shows an enumeration of some
granularity choices for a newly-added stage h.

3.2 Our Search Algorithm
We make this sequence of decisions using beam search, which main-
tains a set of k candidate states, all of which have made the same
number of decisions, but in different ways. At each stage of the
search, we expand all the ways each state could make the next de-
cision to generate successor states, aggregate these in a list, sort it
using the cost model, and take the top k .
Our cost model is trained on full pipelines, but here we apply it

to states in which not all scheduling decisions have been made. We
address this primarily by only costing pipeline stages that have been
scheduled, which implicitly treats unscheduled stages as if they were
inputs. However, whenever we compute features on a scheduled
stage that depend on its relationship to an unscheduled stage, we
use values that produce an optimistic underestimate of the true cost:
we assume that all stages yet to be scheduled are computed as far
inwards as possible given their consumer’s compute_at locations,
to maximize predicted locality, and we assume that their storage
layout is such that all vector loads from them are dense.

Pruning. This procedure enumerates a large class of legal Halide
schedules. To avoid wasting time on states unlikely to result in fast
code, we further prune the generated states in several ways:

• All multi-core parallelism occurs at the outermost loop level.
• SIMD loop sizes are always the native vector width for the
narrowest type used in an expression.

• The number of iterations of the parallel loop should be some-
where in between the number of cores and the number of
cores times 16.

• With the exception of identity stages (a single load), no value
may be redundantly recomputed more than ten times.

• Loops between the storage and compute sites for a stage
should be single-dimensional (i.e. all loop dimensions except
one are degenerate), as Halide’s sliding window optimization
works best along a single axis.

Coarse-to-fine Schedule Refinement. Standard beam search oper-
ates in a single pass. However, the large number of tiling sizes we
generate tends to flood the beam with trivial variations on one basic
schedule. We wish to enforce more diversity in the beam. We do

ACM Trans. Graph., Vol. 38, No. 4, Article 121. Publication date: July 2019.

Learning to Optimize Halide with Tree Search and Random Programs • 121:5

current beam search state

candidate successor states

(a) compute
 at root

(b) compute h at
an existing tiling (c) compute h at a

new outer tiling of f

(d) compute h at
a new sub-tiling of g

(e) store h at tiles of f,
compute h at a new sub-tiling of g

(f) store h at a new outer tiling
of f, compute h at sub-tiles of f

for f.y1 f.x1

allocate g

for g.y1 g.x1

for f.y2 f.x2

for f.y1 f.x1

for h.y1 h.x1

allocate g

allocate h

for g.y1 g.x1

for f.y2 f.x2

for f.y1 f.x1

for h.y1 h.x1

allocate g

allocate h

for g.y1 g.x1

for f.y2 f.x2

for g.y2 g.x2

for f.y1 f.x1

for h.y1 h.x1

allocate g

allocate h

for g.y1 g.x1

for f.y2 f.x2

for g.y2 g.x2

for f.y1 f.x1

for h.y1 h.x1

allocate g

allocate h

for g.y1 g.x1

for f.y3 f.x3

for f.y2 f.x2

for f.y1 f.x1

for h.y1 h.x1

allocate g

allocate h

for g.y1 g.x1

for f.y2 f.x2

for f.y1 f.x1

allocate g

allocate h

for g.y1 g.x1

for f.y3 f.x3

for f.y2 f.x2

for h.y1 h.x1

Fig. 3. We navigate the space of Halide schedules using beam search. Consider a three stage pipeline h → д → f . We begin scheduling at the end of the
pipeline. In the state shown at top left, we have already scheduled д at some tiling of f , and must now generate a list of candidates for how to schedule h for
the cost model to evaluate and rank. The existing Halide autoscheduler enforces a single level of tiling, so it only considers options a and b. Our search space
includes different nested tilings (c, d), and tilings in which the storage and compute occur at different granularities (e, f), which in turn enables sliding window
optimizations (shown as arrows). Each of these choices is parameterized by the tile sizes to use, and the choice space is further expanded by choice of storage
layout for h, and the possibility of inlining it entirely.

this by defining a hash function hashd which hashes the loop nest
up to some fixed depth d . We penalize the cost of all states in the
beam for which a higher-rated state has the same hash. The effect
of this is to preserve the backtracking ability granted by the beam
for top-level scheduling decisions (e.g. which stages are computed
at the root level) that are likely to have a large impact on runtime.
However, fine-level decisions also benefit from beam search, so we
perform a second pass in which we only consider those states with
coarse-level hashes shared by states in the first pass that ultimately
lead to a good final answer. The first pass finds coarse valleys in the
search space, and the second pass explores them more thoroughly.

We then generalize this to an arbitrary number of passes by defin-
ing a permissible set of states. Passp (forp > 1) only considers states
whose hashes at depth p − 1 are in the permissible set, and penalizes
duplicate states according to a hash at depth p + 1. At the end of
the pass, all ancestors of the top few states in the beam have their
hashes at depth p added to the permissible set. We use five passes for
our results below. Please see the code in the supplemental material
for the full details of the hash and the penalization procedure.

The full implementation of this search space and algorithm appear
in AutoSchedule.cpp in the supplemental material.

3.3 Unexplored Schedules
Our algorithm explores a very large class of nested tilings, but the
set of legal Halide schedules is larger still. Some scheduling features
are handled using heuristics instead of search. First, we do not

enumerate all possible ways to unroll loops, but instead just entirely
unroll the innermost non-SIMD loop node if it is of constant size and
has no more than 16 iterations total. Second, while we reorder the
storage layout so that the vectorized dimension is innermost, we do
not change the relative order of the other dimensions in the storage
layout. For anymulti-dimensional loop nodes that remain after tiling,
we nest the generated loops in the same order as the storage layout,
with any additional loops over a reduction domain innermost for
serial loops, or outermost if the other loopswere unrolled.We always
fuse parallel loops into a single parallel loop when legal, avoiding
the slight overhead involved in nested parallelism. We automatically
select a strategy for tails of loops split by factors that do not divide
their extent, and we automatically choose a memory space for each
stage. Other Halide scheduling directives (e.g. rfactor, memoize,
or prefetch), are not considered at all. However, we have designed
our search such that any of these features could be added to the
space by adding more decision points per stage.

4 PREDICTING RUNTIME
Having defined a state space and a method for generating successors
within it, the final component required of beam search is a cost
metric for evaluating states.

The most natural cost to minimize is actual recorded runtime, ob-
tained via benchmarking. However, we wish to evaluate hundreds of
thousands of potential schedules for each algorithm, and compiling
and benchmarking a single schedule takes several seconds. Builds

ACM Trans. Graph., Vol. 38, No. 4, Article 121. Publication date: July 2019.

121:6 • Adams et al.

should be fast and deterministic, and this setup would be neither.
Instead, we train a small neural network to predict runtime based
on features computed using Halide’s symbolic analysis tools, and
minimize this predicted runtime during the tree search.

4.1 Featurizing a Schedule
We separately featurize each stage in an algorithm (though many
of the features describe the relationships between that stage and
others), and we divide our featurization according to Halide’s algo-
rithm/schedule distinction.
Algorithm-specific features, which are invariant to the schedule,

are histograms of the operations performed to compute a single
point in the iteration domain of the stage. We classify operations
performed into 40 separate buckets, using the Halide IR node types
(add, multiply, subtract, load, etc). For each access made to another
stage or to an input buffer, we compute Jacobians which describe
how the coordinates accessed vary with respect to the loop dimen-
sions of the consumer. For example, a stage that downsamples some
input f by a factor of four may include a call of the form f (4x , 4y),
which has a Jacobian of 4I2. We use these Jacobians to classify
memory accesses into several subcategories (for example, pointwise
operations vs broadcasting). They are also used to compute several
schedule-specific features below. Any non-constant terms in the
Jacobian (for example due to data-dependent access) are treated as
unknowns and worst case behavior is assumed.

Schedule-dependent features either count events of various types,
or characterize memory footprints. The events counted include the
number of times some region of a stage is evaluated, the number
of times storage for it is allocated, the number of parallel tasks
launched, the number of whole SIMD vectors computed, and the
number of scalar values of it that are computed. We also use the
Jacobians to determine the number of dense vectors and scalars
loaded per vector computed, amortized across unrolled inner loops
that share loaded values. This amortization captures the reuse of
loaded values that is particularly important for fast matrix multiply
inner loops.

For each stage, at each of several sites, we examine the shapes of
all regions written to and read from. If any of the accessed stages
have been scheduled inline, we look through them to their produc-
ers, multiplying Jacobians as necessary. To compute these shapes
we use the bounds inference machinery built into Halide, which
is based on symbolic interval arithmetic. Inspired by the work of
Sioutas et al. [2018], for each region we characterize the footprint
using the number of bytes touched, and also the number of contigu-
ous segments of memory touched. The latter helps capture spatial
locality, hardware prefetcher behavior, and false sharing of pages
and cache lines.

The sites at which we encode these shapes include the root level
of the loop nest, just inside the containing parallel loop, the site at
which the stage has storage allocated, the site at which the stage is
computed, and the innermost loop. At all of these sites but the last
we also sum up the sizes of all allocations within that loop nest to
compute a “working set” feature.

For stages which have been inlined, many of these features are
zero. Their memory behavior is captured by the stage into which
they were inlined.

This produces thirty-nine schedule-dependent features per stage.
See Appendix A for an exhaustive list.

4.2 Cost Model Design
Attempting to predict the runtime of Halide programs directly using
a neural network requires a large network and is hard to train, as
this is a regression problem in which the target values have a very
large dynamic range. Instead, our cost model outputs runtime as a
dot product between a vector of hand-designed terms and a vector
of coefficients predicted by a small neural network (Figure 4). These
hand-designed terms are non-linear combinations of the schedule-
specific features, crafted in such a way that one would expect them
to scale proportionately to runtime. The network then just allocates
more or less weight to each term, by predicting a coefficient on it. If
any hand-designed term is irrelevant to performance on a particular
architecture, the network is free to always predict a zero coefficient.
There are twenty-seven such terms. As an example, one of the

terms is simply the number of allocations made. The network then
predicts a cost per allocation for this stage. Another term estimates
the total number of bytes read that were written on another core. A
more complex term attempts to estimate the total number of page
faults that may occur, taking into account serialization inside the
kernel when multiple threads fault on the same page. The terms
in our cost model are constructed procedurally from the schedule
features in a differentiable program (Appendix B).
To train our network we minimize L2 error on throughput (the

inverse of predicted runtime). We found that this encourages the
network to spend its capacity parsing the differences between fast
schedules, rather than predicting precisely how slow very bad sched-
ules are. Training batches are composed of 32 schedules for a single
random program. The throughputs are computed relative to the
fastest schedule within each batch, to bring algorithms with very
different runtimes into the same dynamic range. We implemented
the network in Halide itself, and use the work of Li et al. [2018]
for gradient descent. We use Adam [Kingma and Ba 2015] as our
minimizer, with standard hyper-parameters.

4.3 Autotuning
Our cost model does not perfectly predict performance, and beam
search is not guaranteed to globally minimize it. We can therefore
find faster schedules by adding sampling and benchmarking to our
search. We generate candidate schedules by importance sampling
paths down the search tree using the cost model. At each stage of
beam search, we expand the best predicted state with some proba-
bility p. Otherwise, we discard it, and repeat the procedure on the
next-best state, to give an exponentially-decaying distribution. We
typically set p such that we have a 1

20 chance of operating entirely
greedily and never discarding any states, so for an algorithm with s
stages, p = 1

20
1
2s .

Given a modest number of these samples, we can benchmark each
to find the fastest. Given more, we use them to iteratively retrain the
model in between batches of samples to specialize it to a particular

ACM Trans. Graph., Vol. 38, No. 4, Article 121. Publication date: July 2019.

Learning to Optimize Halide with Tree Search and Random Programs • 121:7

schedule features

log

FC layer

ReLU

schedule embedding

FC layer

algorithm features

algorithm embedding

FC layer

ReLU

stack

stacked embedding

coe�icients

size = 39

size = 8

size = 40x7

size = 32

size = 24

in = 39, out 24 in = 40x7, out = 8

in = 32, out = 27

size = 27

Fig. 4. Our cost model network architecture. The network has two heads,
one for embedding schedule-specific features and the other for embedding
algorithm-specific features. The schedule features are first log transformed,
as they have a large dynamic range and are most naturally combined multi-
plicatively. We constrain the weights on the algorithm head to be positive by
passing them through a sigmoid, to encourage cost tomonotonically increase
with operation count. Each embedding head outputs a low-dimensional
vector. These are stacked and passed through a final linear layer and relu to
produce 27 positive coefficients for our 27 hand-designed terms.

algorithm. In order to guarantee that the result of this procedure
is always at least as good as just running beam search, we include
beam search with no random dropout as one of the samples within
each such batch.

5 GENERATING TRAINING DATA
Our training data comes from a random algorithm generator, which
synthesizes a diverse range of programs that exhibit most of the
patterns of computation present in real applications (Figure 5). For
the full details of the vocabulary of this generator, see its source
code in the supplemental material.
We found that the random algorithms did not need to be long,

or even meaningful as algorithms. Our cost model reasons locally
about stages in their immediate context, so it is sufficient to generate
pipelines long enough to represent all the sorts of situations inwhich
a stage could find itself. We do not rely on or exploit any coarse-scale
structure or meaning.

One constraint that we did find necessary was that the programs
must have some notion of the units on each spatial dimension to
safely mix stages. Operations that mix across scales, for example
adding an image to a smaller copy of itself, create shift-varying
memory footprints, which invalidate some of our analysis (see Sec-
tion 7). Fortunately, real imaging and learning pipelines tend to have
these implicit units on their dimensions.
For each algorithm we generate in this way, we synthesize a

batch of 32 schedules using the autotuning procedure described in

histogram

upsample

downsample

unary op

padding

scan

conv2D

binary op

conv1D

all-to-all

relu

slice

pool2D

conv2D

downsample

scan

binary op

conv1D

conv2D

Fig. 5. Example Random Pipelines: Two random pipelines generated by our
system. Our generator creates DAG-structured pipelines out of a library of
stage types commonly used in image processing and deep learning. Each
stage may use any of Halide’s scalar types and may use randomly generated
expressions of their inputs.

Sec. 4.3, with the random dropout probability set so we have a 50%
chance of rejecting any given state. We harvest the featurizations
and runtimes produced in this way to form our training set.

To autotune we require weights for the cost model, so we seem to
have begged the question. For generating an initial round of training
data we use uniform random weights in [−12 ,

1
2]. The structure of

the network and the pruning during search are enough for random
weights to almost always generate runnable schedules. There are
exceptions, and so we kill any compilation or benchmarking job
that takes more than ten minutes. We typically see a yield of 99.5%.
After this initial round of generating training data we train a

model, and then repeat using the newer weights. This iteratively
focuses the network on the sorts of schedules that beam search
is likely to generate. We have found that five rounds of this boot-
strapping procedure, with ten thousand random algorithms times
thirty-two random schedules per round, is sufficient to converge.
Our data generation process is distributed over a cluster of ma-

chines, each of which searches for and compiles multiple programs
in parallel, then benchmarks each one sequentially. For x86 weights,
the cluster machines use a variety of server-class Xeon chips and
for GPU samples we use a cluster of NVIDIA V100 GPUs.

6 RESULTS
Our system is designed to be able to produce good schedules in
short compile times and better schedules given longer compile times.
One way to exploit additional compile time is to increase the beam
size. If more than a few minutes are available, it is worth actually
compiling and benchmarking some promising candidate schedules,
as described in Section 4.3. At the opposite extreme, for the shortest
compile times our system can operate in greedy mode, using a beam
size of 1.
We evaluate our system in these various compile-time regimes

on a test set of random pipelines produced by our random pipeline
generator, as well as a benchmark suite of realistic image processing
pipelines. All performance results were generated under Ubuntu

ACM Trans. Graph., Vol. 38, No. 4, Article 121. Publication date: July 2019.

121:8 • Adams et al.

18.04 on an Intel Core i9-7960X CPU. We compare our results to
that of the current autoscheduler used by Halide, which we will
refer to from now on as “master”, on these two datasets. Results on
random pipelines are shown and discussed in Figures 6 and 7.

6.1 Application suite
We also evaluate the system on a benchmark suite of real applica-
tions to ensure we do not overfit to randomly-generated pipelines.
All algorithms were run on the standard 5 megapixel test image
from the Halide repository. The applications are largely taken from
the Halide repository or [Mullapudi et al. 2016], and the code for
all is in the supplemental material. Here we will only describe the
changes and additions relative to that work.

• stencil chain is a linear sequence of 32 non-separable 5 × 5
convolutions on a single channel of the test image.

• camera pipe has been augmented since the publication of
previous autoscheduler [Mullapudi et al. 2016] by the addition
of a sharpening filter.

• conv + relu is a single layer of a CNN at a size and shape for
which we were able to write a manual schedule that beat the
performance of MKLDNN [2016] (24 output channels, 120
input channels, 100x80 spatial size, and a batch size of 5).

• IIR blur is a blur implemented using a four pass (top to bottom,
bottom to top, left to right, right to left) IIR filter.

• BGU is a bilateral-guided upsampling [Chen et al. 2016]
pipeline. The human-written schedule performs poorly rel-
ative to the automatic methods. We note that the human-
written schedule was published with the paper as the ref-
erence implementation, and was written by a co-creator of
Halide. If we exclude this one result, human performance
rises to 110% faster than the baseline, and is still inferior to
our system when operating over similar time scales (hours).

• Resnet50 is the popular deep residual network [He et al. 2016].
We do not compare to a human-written Halide schedule
here. When compared to the most popular machine learning
frameworks, we find our implementation to be competitive
with MKLDNN-based frameworks. It is faster than Tensor-
Flow [2016] and PyTorch [2017], but slower thanMXNet [2015].

The results of this evaluation can be seen in Figure 8. On average,
our system is significantly faster that prior work in all modes, and
also significantly exceeds expert human performance when given
the ability to benchmark. The raw runtimes and code to reproduce
these results are available in the supplemental material.

6.2 Other architectures
In decoupling the featurization, the search space, and the search
algorithm, we have designed our system to be adaptable to new
architectures by extending any of these as necessary. However, this
does not mean adding a new architecture is a trivial undertaking.
Each new architecture requires going through a similar bring-up
process as we did for x86 CPUs. We must train a cost model on
hundreds of thousands of fresh random programs, and triage the
results to ensure that the featurization correctly captures the factors
that matter for performance on that architecture.

sp
ee

d-
up

 o
ve

r
m

as
te

r

greedy
(geomean = 1.37x)

beam search
(geomean = 2.29x)

1x

2x

0.5x

10x

5x

Fig. 6. Speed-up over the existing Halide autoscheduler on one hundred
unseen random pipelines of lengths between 10 and 40 stages. Our algorithm
operating in fast greedy mode is on average 1.37 times faster than the
master autoscheduler. With beam search, our system is 2.29 times faster.
The dynamic range is high — we are sometimes more than ten times faster,
and sometimes less than half the speed. We generally see more outliers on
the positive end, indicating that our method is more reliable than master.
We found no benefit in autotuning on the random pipelines. While these
random pipelines were not part of the training set, they are samples from
the same distribution, and so the model can predict runtime accurately (see
Figure 7) and gains little from benchmarking.

m
ea

su
re

d
ru

nt
im

e
(m

s)

predicted runtime (ms)
1

10

10

102

102

103

103

104

104

Fig. 7. Actual vs predicted runtimes for the random pipelines used in Fig-
ure 6. R2 correlation is 0.96. The model was trained on a cluster of Intel
Xeon servers in a managed Linux environment, yet these runtimes were
measured on a desktop x86 CPU running vanilla Ubuntu, so the line of
best-fit is slightly off the diagonal. For our scheduling algorithm to work we
do not need to predict runtimes accurately, we just need to put them in the
correct order, so minor changes in the target architecture are unimportant.

The most straight-forward new architecture to add is ARM CPUs.
They mostly differ from high-end x86 quantitatively, rather than
qualitatively. We evaluated our x86 model on quad-core Cortex A72
instances available on AWS. In greedy mode it is 9% faster than
Halide master, and running beam search it is 23% faster, despite the
fact that these weights were fit to results from processors on the
opposite end of the performance spectrum. We lack enough ARM
training samples to date to train network weights specifically for
that architecture.

Adding CUDA GPUs requires changes to the search space. These
are in flux, but at the time of writing they are as follows. For SIMD
loop sizes used in the search, we use a value of 32 for all stages,
to encourage a full warp of 32 threads along those dimensions.
Using Halide’s symbolic analysis tools, we reject any schedules with
a per-block allocation size that would exceed the GPU’s shared
memory limit. We map the outermost parallel loop level to GPU
blocks and the SIMD loop to GPU threads. We currently make

ACM Trans. Graph., Vol. 38, No. 4, Article 121. Publication date: July 2019.

Learning to Optimize Halide with Tree Search and Random Programs • 121:9

0

0.25

0.5

0.75

1

stencil chain interpolate max filter resnet 50 camera pipe histogram equalize non-local means lens blur

Halide master Ours, greedy (50% faster) Ours, beam search (75% faster) Ours, autotuned (95% faster) Ours, autotuned and retrained (135% faster) Human (70% faster)

0

0.25

0.5

0.75

1

bilateral grid matrix multiply harris local laplacian conv + relu IIR blur BGU unsharp mask

Fig. 8. Throughput relative to the throughput of the best known schedule on a suite of real applications, running on a high-end x86 CPU. Our model was not
trained on these applications. From left to right within each cluster we have the implementation of Mullapudi et al. in the Halide open source repository,
our system operating greedily (to minimize compile time), then our system with beam search using a beam of size 32. These three techniques all produce
schedules without needing to compile and benchmark. Our system is 50% faster than the baseline when operating greedily, and 75% faster using beam search.
Next we have our system operating in a mode where we importance sample our cost model to generate 32 probably-good schedules and benchmark to find
the best. This takes about ten minutes and produces schedules twice as fast as the baseline. If we instead spend three hours generating and benchmarking
more schedules, continuously using them to retrain the model for the specific application, we are on average 135% faster than the baseline. Note that beam
search is not uniformly better than greedy search. Even if the cost model were perfect, beam search does not guarantee optimality. Neither do expert humans,
who produced schedules 70% faster than the baseline.

no changes to the featurization. For a baseline here we use the
GPU autoscheduler from Li et al.’s work [2018], which is to our
knowledge the only functional GPU autoscheduler for Halide. On
the application suite, our system operating greedily is currently
29% faster on average, and using beam search it is 33% faster. (We
exclude lens blur and conv + relu from this comparison because the
baseline algorithm would not run them and Resnet50 because the
necessary baseline modifications were unavailable.) We consider
these results preliminary but promising: careful comparison to hand-
written baselines of standard applications is important for better
absolute calibration and the current search restrictions to ensure
valid GPU configurations are simplistic, likely excluding many faster
choices.

6.3 Additional comparisons and ablations
We also performed a number of experiments on related systems
and ablations of our system. None of these alternatives exceeded
the performance of our system operating in greedy mode, so we
mention them only briefly.

Autotuning Halide master. Mullapudi et al. report additional per-
formance can be attained by searching over a set of small variations
of their parameter space. We reproduced this result, and found that
it was 21% faster than master on the application suite above.

PolyMage. The closest related language with a fully-automatic
scheduler is PolyMage [Jangda and Bondhugula 2018]. The Poly-
Mage repository reproduces a subset of this benchmark suite, though
the code has decayed over time. Over the four applications that were
functional at the time of writing (harris, unsharp, interpolate, and
bilateral grid), PolyMage is 18% faster than Halide master.

No coarse-to-fine. We measure the benefit of doing coarse-to-fine
passes (Section 3.2) by removing it, and instead increasing the beam
size to 160 to maintain the same total compile time. This produced
results 48% faster than Halide master, which is on par with our
greedy result, indicating that a large beam is useless if it has no
diversity.

No nested tiling. In order to test the relative importance of our
better search algorithm and our expansion of the search space, we
constrained beam search to only consider schedules within the space
considered by Halide master. It produced schedules that were 28%
faster than Halide master (compared to 75% on our expanded space),
indicating that the improved search algorithm and cost model are
important, and so is the expanded search space.

Random search vs retraining. A final natural question to ask is
whether our fastest mode (autotuning with retraining) is fast due to
the retraining, or simply due to takingmore time to benchmarkmore
random samples. To test this we ran beam search using the final set
of weights produced during retraining. We found it to be 82% faster
than Halide master, which is only slightly better than using the
original, non-retrained weights. It seems most of the benefit comes
from taking more random samples and taking the best schedule out
of those samples.

6.4 Compiler performance
We intend this algorithm to work on very large programs, so scala-
bility with respect to program size is critical. One reason we select
beam search is because it scales linearly with the number of deci-
sions to be made, which for our parameterization is bounded by
twice the pipeline size. Beam search also scales linearly in the size of

ACM Trans. Graph., Vol. 38, No. 4, Article 121. Publication date: July 2019.

121:10 • Adams et al.

the beam and the branching factor (the average number of successor
states to a state). We use the size of the beam as a constant that
we can tune according to available compile time. Search time also
scales linearly with the number of coarse-to-fine passes of search
we perform.

Above we report results at beam sizes of 1 (with one pass) and
32 (with five passes). The branching factor is dominated by the
number of tiling choices we consider. This is the set of factorizations
of a multi-dimensional domain, so it scales poorly with the size
and dimensionality of the stages in the program. We keep this
under control by logarithmically spacing the sizes, and automatically
coarsening the sampling if more than a fixed number of candidates
are generated.
At a beam size of 32, the slowest-to-compile application is lens

blur, which evaluates 1.47 million potential schedules in 166 sec-
onds, or nine microseconds per schedule. The fastest is conv + relu,
which takes 334 milliseconds and considers just over ten thousand
schedules. At a beam size of one, i.e. operating greedily, these times
are 1.6 seconds and 15 milliseconds respectively. Compile times are
dominated by generating candidate schedules and computing their
featurization. The cost model itself is small and easy to parallelize
(across batches of candidate schedules). Furthermore, the largest
single layer in the network embeds the algorithm-specific features,
which do not vary across a batch of schedules for the same algo-
rithm, so it can be pre-computed, leaving very little work to do per
distinct schedule.

7 LIMITATIONS AND FUTURE WORK
Expanding the training set. We have demonstrated that we can

train a costmodel on random programs and have it produce excellent
schedules on real applications. A natural next step is to contribute
samples harvested from real applications back to the training set.
This will be particularly powerful when a user writes an algorithm
for which our system produces a lousy schedule: our first response
can be to ask them to donate it to our training set.

Expanding the search space. Our ability to grow the training set
makes our algorithm extensible to new application domains. We
have similarly designed the system to be extensible to new schedul-
ing primitives and new architectures by expanding the search space
and featurization. However, investigating slow schedules and craft-
ing new features that capturewhatmakes them slow is difficult work.
A system that relied less onmanual feature engineering (but was still
capable of exploiting Halide’s internal analysis passes) could adapt
more gracefully to newer architectures, and could capture aspects
of performance that we have missed on current architectures.

Reasoning in terms of constants. One major limitation of our sys-
tem is that in order to evaluate a cost it must reason in terms of
constant-valued properties of the algorithm and schedule. This
means the user must provide an output size for which to optimize
(though the resulting code will work at other sizes too). We also
compute features of tiled loops by examining the memory footprints
of a single representative iteration. We pick the middle-most. For
some algorithms the middle-most iteration may be unusually cheap.

For example when adding a matrix to its own transpose, the middle-
most iteration only requires a single value of the input. This could
lead beam search to a pathologically slow schedule.

Predicting performance through a deep compiler stack. Finally, our
cost model deals with loop nests in an abstracted way in order to
search over them quickly. When a final loop nest is selected as the
one to compile, a heavy-duty compiler stack takes over. We are
asking the cost model to not only predict the performance of the
underlying hardware, but also predict the behavior of this compiler
stack. This is notoriously difficult for humans, and sensitive to small
changes in the underlying compiler.

8 CONCLUSION
We have introduced a new automatic scheduling algorithm for high-
performance image processing and deep learning. For this, we have
described a new parameterization of the space of valid Halide sched-
ules, a beam search variant, manually-derived features, a trained
cost model, and optional benchmarking and fine tuning. Our method
significantly outperforms previous work on the automatic schedul-
ing of high-performance image processing code, often by a factor
of more than 2×. It can naturally span a trade-off between compile
time and final performance and can be extended to handle new al-
gorithms, scheduling directives, or architectures by adding features
and retraining.

ACKNOWLEDGMENTS
This work was partially funded by Toyota, as well as the NSF/Intel
Partnership on Computer Assisted Programming for Heterogeneous
Architectures through grant CCF-1723445.

REFERENCES
Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Gregory S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian J. Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Józefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat
Monga, Sherry Moore, Derek Gordon Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul A. Tucker, Vincent Van-
houcke, Vijay Vasudevan, Fernanda B. Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Distributed Systems. CoRR (2016).
http://arxiv.org/abs/1603.04467

Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jeffrey
Bosboom, Una-May O’Reilly, and Saman Amarasinghe. 2014. OpenTuner: An
Extensible Framework for Program Autotuning. In Proceedings of the 23rd Inter-
national Conference on Parallel Architectures and Compilation (PACT ’14). ACM.
https://doi.org/10.1145/2628071.2628092

Amir H. Ashouri, William Killian, John Cavazos, Gianluca Palermo, and Cristina Silvano.
2018. A Survey on Compiler Autotuning Using Machine Learning. ACM Comput.
Surv. 51, 5 (Sept. 2018). https://doi.org/10.1145/3197978

Riyadh Baghdadi, Ulysse Beaugnon, Albert Cohen, Tobias Grosser, Michael Kruse, Chan-
dan Reddy, Sven Verdoolaege, Adam Betts, Alastair F. Donaldson, Jeroen Ketema,
Javed Absar, Sven van Haastregt, Alexey Kravets, Anton Lokhmotov, Robert David,
and Elnar Hajiyev. 2015. PENCIL: A Platform-Neutral Compute Intermediate Lan-
guage for Accelerator Programming. In Proceedings of the 2015 International Confer-
ence on Parallel Architecture and Compilation (PACT) (PACT ’15). IEEE Computer
Society. https://doi.org/10.1109/PACT.2015.17

Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. 2008. A Practical
Automatic Polyhedral Parallelizer and Locality Optimizer. In Proceedings of the 29th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’08). ACM. https://doi.org/10.1145/1375581.1375595

Jiawen Chen, Andrew Adams, Neal Wadhwa, and Samuel W. Hasinoff. 2016. Bilateral
Guided Upsampling. ACM Trans. Graph. 35, 6 (Nov. 2016). https://doi.org/10.1145/
2980179.2982423

ACM Trans. Graph., Vol. 38, No. 4, Article 121. Publication date: July 2019.

http://arxiv.org/abs/1603.04467
https://doi.org/10.1145/2628071.2628092
https://doi.org/10.1145/3197978
https://doi.org/10.1109/PACT.2015.17
https://doi.org/10.1145/1375581.1375595
https://doi.org/10.1145/2980179.2982423
https://doi.org/10.1145/2980179.2982423

Learning to Optimize Halide with Tree Search and Random Programs • 121:11

Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao,
Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. MXNet: A Flexible and Efficient
Machine Learning Library for Heterogeneous Distributed Systems. CoRR (2015).
http://arxiv.org/abs/1512.01274

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Haichen Shen, Eddie Q. Yan, Leyuan
Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018a.
TVM: End-to-End Optimization Stack for Deep Learning. CoRR (2018). http:
//arxiv.org/abs/1802.04799

Tianqi Chen, Lianmin Zheng, Eddie Q. Yan, Ziheng Jiang, Thierry Moreau, Luis Ceze,
Carlos Guestrin, and Arvind Krishnamurthy. 2018b. Learning to Optimize Tensor
Programs. CoRR (2018). http://arxiv.org/abs/1805.08166

Chris Cummins, Pavlos Petoumenos, ZhengWang, and Hugh Leather. 2017. End-to-end
deep learning of optimization heuristics. In Parallel Architectures and Compilation
Techniques (PACT), 2017 26th International Conference on. IEEE.

Grigori Fursin, Cupertino Miranda, Olivier Temam, Mircea Namolaru, Elad Yom-Tov,
Ayal Zaks, Bilha Mendelson, Edwin Bonilla, John Thomson, Hugh Leather, et al.
2008. MILEPOST GCC: machine learning based research compiler. In GCC summit.

Tobias Grosser, Armin Groslinger, and Christian Lengauer. 2012. Polly - Performing
Polyhedral Optimizations on a Low-Level Intermediate Representation. Parallel
Processing Letters 22, 4 (2012).

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning
for Image Recognition. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

James Hegarty, John Brunhaver, Zachary DeVito, Jonathan Ragan-Kelley, Noy Cohen,
Steven Bell, Artem Vasilyev, Mark Horowitz, and Pat Hanrahan. 2014. Darkroom:
Compiling High-level Image Processing Code into Hardware Pipelines. ACM Trans.
Graph. (Proc. SIGGRAPH) 33, 4 (July 2014).

Intel. 2016. Intel(R) Math Kernel Library for Deep Neural Networks. https://github.
com/intel/mkl-dnn

Abhinav Jangda and Uday Bondhugula. 2018. An effective fusion and tile size model
for optimizing image processing pipelines. In Symposium on Principles and Practice
of Parallel Programming.

Diederick P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization.
In International Conference on Learning Representations.

Tzu-Mao Li, Michaël Gharbi, AndrewAdams, Frédo Durand, and Jonathan Ragan-Kelley.
2018. Differentiable Programming for Image Processing and Deep Learning in Halide.
ACM Trans. Graph. 37, 4 (July 2018). https://doi.org/10.1145/3197517.3201383

Charith Mendis, Saman Amarasinghe, and Michael Carbin. 2018. Ithemal: Accurate,
Portable and Fast Basic Block Throughput Estimation using Deep Neural Networks.
ArXiv e-prints (Aug. 2018). arXiv:cs.DC/1808.07412 https://arxiv.org/pdf/1808.07412.
pdf

Ravi Teja Mullapudi, Andrew Adams, Dillon Sharlet, Jonathan Ragan-Kelley, and
Kayvon Fatahalian. 2016. Automatically Scheduling Halide Image Processing
Pipelines. ACM Trans. Graph. 35, 4 (July 2016). https://doi.org/10.1145/2897824.
2925952

Ravi Teja Mullapudi, Vinay Vasista, and Uday Bondhugula. 2015. PolyMage: Automatic
Optimization for Image Processing Pipelines. SIGARCH Comput. Archit. News 43, 1
(March 2015). https://doi.org/10.1145/2786763.2694364

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. 2017. Auto-
matic differentiation in PyTorch. In NIPS Autodiff Workshop.

Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy, Saman Amaras-
inghe, and Frédo Durand. 2012. Decoupling Algorithms from Schedules for Easy
Optimization of Image Processing Pipelines. ACM Trans. Graph. 31, 4 (July 2012).
https://doi.org/10.1145/2185520.2185528

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand,
and Saman Amarasinghe. 2013. Halide: A Language and Compiler for Optimizing
Parallelism, Locality, and Recomputation in Image Processing Pipelines. SIGPLAN
Not. 48, 6 (June 2013). https://doi.org/10.1145/2499370.2462176

Mohammed Rahman, Louis-Noël Pouchet, and P Sadayappan. 2010. Neural network
assisted tile size selection. In International Workshop on Automatic Performance
Tuning (IWAPT’2010). Berkeley, CA: Springer Verlag.

D. Raj. Reddy. 1977. Speech Understanding Systems: A Summary of Results of the Five-Year
Research Effort. Department of Computer Science Technical Report. Carnegie Mellon
University.

Savvas Sioutas, Sander Stuijk, Henk Corporaal, Twan Basten, and Lou Somers. 2018.
Loop Transformations Leveraging Hardware Prefetching. In Proceedings of the 2018
International Symposium on Code Generation and Optimization (CGO 2018). ACM.
https://doi.org/10.1145/3168823

Savvas Sioutas, Sander Stuijk, Luc Waeijen, Twan Basten, Henk Corporaal, and Lou
Somers. 2019. Schedule Synthesis for Halide Pipelines Through Reuse Analysis.
ACM Trans. Archit. Code Optim. 16, 2 (April 2019). https://doi.org/10.1145/3310248

Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal, Zach
DeVito, William S. Moses, Sven Verdoolaege, Andrew Adams, and Albert Cohen.
2018. Tensor Comprehensions: Framework-Agnostic High-Performance Machine
Learning Abstractions. CoRR (2018). http://arxiv.org/abs/1802.04730

A FEATURIZATION
Here we list the schedule-dependent terms of the featurization used
by the cost model (Sec 4.1). All features are computed per-stage.
Note that for inlined stages, most of the features are zero, and their
contribution is instead captured by the stage into which they are
inlined. See the source code in the supplemental material for the
details of how each feature is computed.

num_realizations The number of times storage for this stage is allocated.
The product of the outer loop extents around the store_at site.

num_productions The number of times a tile of this stage is computed. The
product of the outer loop extents around the compute_at site.

points_computed_per_realization The number of points computed of
this stage per allocation. The product of the loop extents within the
store_at site.

points_computed_per_production The number of points computed of
this stage per region computed. The product of the loop extents within
the compute_at site.

points_computed_total The number of points computed.
Equal to num_realizations × points_computed_per_realization.

points_computed_minimum The minimum number of points that must be
computed to produce a correct output. This is not a function of the sched-
ule, but it is a useful reference point to evaluate redundant recomputation.

innermost_loop_extent The number of points in the iteration domain for
a single tile of this stage.

innermost_pure_loop_extent The number of points in the iteration do-
main for a single tile of this stage, excluding loops corresponding to
reductions. Measures the number of independent values of the stage
computed per tile.

unrolled_loop_extent If the innermost loop over a tile is to be unrolled,
this is equal to innermost_pure_loop_extent. If not, this feature is one.

inner_parallelism The number of parallel jobs launched while comput-
ing a region of this stage. Equal to the product of the parallel inner loops.
Currently always one except for stages scheduled at root, because we
force all parallelism to the outer loop.

outer_parallelism The maximum possible number of simultaneously-
computed regions of this stage. Equal to the product of the parallel outer
loops.

bytes_at_realization The size in bytes of the storage backing this stage.
bytes_at_production The size in bytes of the memory footprint written

to per region computed of a stage.
bytes_at_root The size in bytes of the memory required to back this stage,

if it were computed at the root level. Does not depend on the schedule,
but acts as a useful point of reference.

innermost_bytes_at_realization The size in bytes of the storage for
this stage along the innermost dimension, E.g. for a row-major matrix,
this would be the length of a row in bytes.

innermost_bytes_at_production The size in bytes along the innermost
dimension of the region written to per production.

innermost_bytes_at_root The size in bytes along the innermost dimen-
sion if this stage were computed at root.

inlined_calls For inlined Funcs, the total number of times the Func is
evaluated. Otherwise zero.

unique_bytes_read_per_realization The total number of unique bytes
loaded from all inputs per realization.

unique_lines_read_per_realization Similar to the above, but counts
the number of contiguous-in-memory lines of data instead of bytes.

allocation_bytes_read_per_realization The sum of the sizes of all
allocations accessed per realization of this stage.

vector_size The vectorization factor (SIMD width) used to compute this
stage.

ACM Trans. Graph., Vol. 38, No. 4, Article 121. Publication date: July 2019.

http://arxiv.org/abs/1512.01274
http://arxiv.org/abs/1802.04799
http://arxiv.org/abs/1802.04799
http://arxiv.org/abs/1805.08166
https://github.com/intel/mkl-dnn
https://github.com/intel/mkl-dnn
https://doi.org/10.1145/3197517.3201383
http://arxiv.org/abs/cs.DC/1808.07412
https://arxiv.org/pdf/1808.07412.pdf
https://arxiv.org/pdf/1808.07412.pdf
https://doi.org/10.1145/2897824.2925952
https://doi.org/10.1145/2897824.2925952
https://doi.org/10.1145/2786763.2694364
https://doi.org/10.1145/2185520.2185528
https://doi.org/10.1145/2499370.2462176
https://doi.org/10.1145/3168823
https://doi.org/10.1145/3310248
http://arxiv.org/abs/1802.04730

121:12 • Adams et al.

native_vector_size The native SIMD width for the narrowest type used
when computing this stage. Does not depend on the schedule, but can be
combined with the previous feature to detect unused SIMD lanes.

num_vectors The total number of entire SIMD vectors used to compute
this stage.

num_scalars The total number of points of this stage computed as unvec-
torized code, typically due to loop tails.

scalar_loads_per_vector The number of scalar load instructions used
per vector computed. These can arise from broadcast operations, vector
gathers, or strided loads with stride greater than four.

vector_loads_per_vector The number of dense vector load instructions
used per vector computed. Strided vector loads with stride less than five
are treated as the equivalent number of dense loads.

scalar_loads_per_scalar The number of load instructions when com-
puting a single scalar value of this stage.

unique_bytes_read_per_vector The number of unique bytes loaded to
compute a single SIMD vector of this stage.

unique_lines_read_per_vector The number of contiguousmemory spans
accessed to compute a single SIMD vector of this stage.

unique_bytes_read_per_task The number of unique bytes accessed per
parallel task. As with bytes_at_task, if the stage is computed at finer
granularity than a single task, we measure the union of the regions ac-
cessed.

bytes_at_task The total number of bytes written of this stage per parallel
task. If the stage is computed at a finer granularity than parallel tasks,
then we take the union of the regions written to per parallel task of the
containing parallelized stage.

innermost_bytes_at_task The same as the previous feature, but only
considers the size of the innermost storage dimension.

unique_lines_read_per_task The number of contiguous memory spans
accessed per parallel task.

working_set The sum of the sizes of all temporary allocations made while
computing a region of this stage.

working_set_at_task The sum of the sizes of all in-scope allocations at
the containing or inner parallel task site.

working_set_at_production The sum of the sizes of all in-scope alloca-
tions at the production site.

working_set_at_realization The sum of the sizes of all in-scope alloca-
tions at the realization site.

working_set_at_root The sum of the sizes of all allocations made for the
entire algorithm. This feature is the same for all stages.

B MANUAL COST MODEL
This appendix describes the hand-designed tail end of our cost model
from Section 4.2. The coefficients predicted by the neural network
are written as ci . We begin by defining two auxiliary functions:

m(x) = max(x , 1) select(x , t , f) = if t then x else f

The cost is then given by the following:
compute_cost = select(inlined_calls > 0,
vector_size × num_vectors × c0 + num_scalars × c1,

vector_size × num_vectors × c2 + num_scalars × c3)

num_tasks =m(inner_parallelism × outer_parallelism)

load_cost =

(num_realizations × unique_lines_read_per_realization × c4+

num_realizations × unique_bytes_read_per_realization × c5+

num_vectors × vector_loads_per_vector × c6+

num_scalars × scalar_loads_per_scalar × c7+

num_vectors × scalar_loads_per_vector × c8+

num_scalars × unique_bytes_read_per_vector × c9+

num_vectors × unique_bytes_read_per_vector × c10+

num_scalars × unique_lines_read_per_vector × c11+

num_vectors × unique_lines_read_per_vector × c12+

num_tasks × unique_bytes_read_per_task × c13+

num_tasks × unique_lines_read_per_task × c14)

tasks_per_core = num_tasks/num_cores

penalized_compute_cost = compute_cost ×
⌈tasks_per_core⌉

m(tasks_per_core)

lines_written_per_realization =
inner_parallelism × bytes_at_task

m(innermost_bytes_at_task)

α = select(inner_parallelism > 1, c15, select(is_output, c16, c17))

β = select(inner_parallelism > 1, c18, select(is_output, c19, c20))

store_cost =

num_realizations × (α × lines_written_per_realization+

β × bytes_at_realization)

false_sharing_cost =

select(inner_parallelism > 1,
(num_vectors + num_scalars) × c21
m(innermost_bytes_at_task)

, 0)

max_threads_hitting_same_page_fault =

min(inner_parallelism, 4096/m(innermost_bytes_at_task))

page_fault_cost =

bytes_at_production × max_threads_hitting_same_page_fault ×

inner_parallelism × outer_parallelism × c22

malloc_cost = c23 × num_realizations

parallel_launch_cost =

num_productions × select(inner_parallelism > 1, c24, 0)

parallel_task_cost =

num_productions × (inner_parallelism − 1) × c25

working_set_cost = working_set × c26

cost = penalized_compute_cost + load_cost +

store_cost + false_sharing_cost + page_fault_cost +

malloc_cost + parallel_launch_cost +

parallel_task_cost + working_set_cost

ACM Trans. Graph., Vol. 38, No. 4, Article 121. Publication date: July 2019.

	Abstract
	1 Introduction
	1.1 Our Approach

	2 Related Work
	3 Navigating the Halide Scheduling Space
	3.1 Parameterizing the Space of Schedules
	3.2 Our Search Algorithm
	3.3 Unexplored Schedules

	4 Predicting Runtime
	4.1 Featurizing a Schedule
	4.2 Cost Model Design
	4.3 Autotuning

	5 Generating Training Data
	6 Results
	6.1 Application suite
	6.2 Other architectures
	6.3 Additional comparisons and ablations
	6.4 Compiler performance

	7 Limitations and Future Work
	8 Conclusion
	Acknowledgments
	References
	A Featurization
	B Manual cost model

