Recursive filtering in Halide

Dillon Sharlet, Google
Recursive filter for a 1D signal

\[y_n = (1 - A) y_{n-1} + A x_n \]

where \(x \) is input, \(y \) is output, \(A \) is the filter coefficient
Description

- Recursive filter for a 1D signal
 \[y_n = (1 - A) y_{n-1} + A x_n \]

 where \(x \) is input, \(y \) is output, \(A \) is the filter coefficient

- Example applied to a delta function

\[n = 0 \]

\[x = \begin{array}{cccccc}
 & & & & & \\
\end{array} \]

\[y = \begin{array}{cccccc}
 & & & & & \\
\end{array} \]
● Recursive filter for a 1D signal

\[y_n = (1 - A) y_{n-1} + A x_n \]

where \(x \) is input, \(y \) is output, \(A \) is the filter coefficient

● Example applied to a delta function

\[n = 1 \]

\[x = \begin{array}{cccccc}
_ & _ & _ & _ & _ & 1 \\
_ & _ & _ & _ & _ & _ \\
\end{array} \]

\[y = \begin{array}{cccccccc}
_ & _ & _ & 1 & _ & _ & _ & _ \\
_ & _ & _ & _ & _ & _ & _ & _ \\
\end{array} \]
● Recursive filter for a 1D signal

\[y_n = (1 - A) y_{n-1} + A x_n \]

where \(x \) is input, \(y \) is output, \(A \) is the filter coefficient

● Example applied to a delta function
Description

- Recursive filter for a 1D signal
 \[y_n = (1 - A) y_{n-1} + A x_n \]
 where \(x \) is input, \(y \) is output, \(A \) is the filter coefficient

- Example applied to a delta function

\[
\begin{array}{c}
n = 3 \\
x = \\
y =
\end{array}
\]
Description

- Recursive filter for a 1D signal
 \[y_n = (1 - A) y_{n-1} + A x_n \]

 where \(x \) is input, \(y \) is output, \(A \) is the filter coefficient

- Example applied to a delta function

\[
\begin{align*}
\text{\(n = 4 \)} & \\
\text{\(x = \)} & \\
\text{\(y = \)}
\end{align*}
\]
Recursive filter for a 1D signal

\[y_n = (1 - A) y_{n-1} + A x_n \]

where \(x \) is input, \(y \) is output, \(A \) is the filter coefficient

Example applied to a delta function

\[
\begin{align*}
\text{\(n = 5 \)} & \\
\text{\(x \)} & = \begin{array}{cccccc}
_ & _ & _ & _ & _ & \text{\(_ \)} \\
_ & _ & _ & _ & _ & _ \\
_ & _ & _ & _ & _ & _ \\
_ & _ & _ & _ & _ & _ \\
_ & _ & _ & _ & _ & _ \\
_ & _ & _ & _ & _ & _ \\
\end{array} \\
\text{\(y \)} & = \begin{array}{cccccc}
_ & _ & _ & _ & _ & \text{\(_ \)} \\
_ & _ & _ & _ & _ & _ \\
_ & _ & _ & _ & _ & _ \\
_ & _ & _ & _ & _ & _ \\
_ & _ & _ & _ & _ & _ \\
_ & _ & _ & _ & _ & _ \\
_ & _ & _ & _ & _ & _ \\
\end{array}
\end{align*}
\]
Recursive filter for a 1D signal

\[\textbf{y}_n = (1 - A) \textbf{y}_{n-1} + A \textbf{x}_n \]

where \(\textbf{x} \) is input, \(\textbf{y} \) is output, \(A \) is the filter coefficient

Example applied to a delta function
Recursive filter for a 1D signal

\[y_n = (1 - A) \, y_{n-1} + A \, x_n \]

where \(x \) is input, \(y \) is output, \(A \) is the filter coefficient.

Example applied to a delta function

\[n = 7 \]

\[x = \]

\[y = \]
Recursive filter for a 1D signal

\[y_n = (1 - A) y_{n-1} + A x_n \]

where \(x \) is input, \(y \) is output, \(A \) is the filter coefficient

Example applied to a delta function
Description

- Recursive filter for a 1D signal

\[y_n = (1 - A) \ y_{n-1} + A \ x_n \]

where \(x \) is input, \(y \) is output, \(A \) is the filter coefficient

- Example applied to a delta function
Description

- Recursive filter for a 1D signal

\[y_n = (1 - A) y_{n-1} + A x_n \]

where \(x \) is input, \(y \) is output, \(A \) is the filter coefficient

- Example applied to a delta function
Description

- Recursive filter for a 1D signal
 \[y_n = (1 - A) y_{n-1} + A x_n \]
 where \(x \) is input, \(y \) is output, \(A \) is the filter coefficient.
- Example applied to a delta function

\[x = \]

\[y = \]
To apply this recursive filter to an image, apply it four times:

a. Up and down the columns
b. Right and left across the rows
Reductions

● To implement this algorithm:
 ○ Need to reference output at previous pixel to compute current output

● This cannot be done with a pure definition

● We can do this with update stages and RDomS
 ○ RDom (Reduction Domain) provides a serial loop
 ○ Can have dependencies between loop iterations
Multi-stage Funcs

\[f(x, y) = x + y; \]
\[f(x, 0) += 5; \]

Funcs can have multiple stages

We call the additional ones “update” stages

They run in sequence
f(x, y) = x + y;
f(x, 0) += 5;

They can use arbitrary index expressions on the left-hand-side
f(x, y) = x + y;

f(x, 0) += 5;

// f(x, 0) = f(x, 0) + 5;

They can recursively load values defined by the previous stage
f(x, y) = x + y;
f(x, 0) += 5;
f.vectorize(x, 8);

They are scheduled independently
\begin{align*}
f(x, y) &= x + y; \\
f(x, 0) &= 5; \\
f.\text{vectorize}(x, 8); \\
f.\text{update}(0) \\
&\quad \text{.unroll}(x, 2); \\
\end{align*}

They are scheduled independently.
\(f(x, y) = x + y; \)
\(f(x, 0) += 5; \)

for y:
 for x:
 \(f[x,y] = x + y \)
\[
f(x, y) = x + y;
\]
\[
f(x, 0) += 5;
\]
f(x, y) = x + y;
RDom r(1, 10);
f(x, 0) += f(x, r);

An update stage can be a reduction over some domain “RDom”
f(x, y) = x + y;
RDom r(1, 10);
f(x, 0) += f(x, r);

This just throws an extra loop around the loop nest for that stage:

for r from 1 to 10:
 for x:
 f[x,0] = f[x,0] + f[x,r];
f(x, y) = x + y;
RDom r(1, 10);
f(x, 0) += f(x, r);
f.update(0)
.unroll(r);

You can schedule RDom variables
f(x, y) = x + y;
RDom r(1, 10);
f(x, 0) += f(x, r);
f.update(0)
 .reorder(r, x);

You can schedule RDom variables
f(x, y) = x + y;
RDom r(1, 10);
f(x, 0) += f(x, r);
f.update(0)
 .parallel(r);

ERROR: Potential Race Condition

But only when we can prove there’s no race condition or change in meaning.

Halide’s promise: Scheduling never changes the results!
Generators

- Two ways to call Halide code
 - **JIT**: Halide pipelines executed in the same process they are defined in
 - **AOT**: Halide pipelines compiled to object files (.o, .obj) and linked into/called from another program via C ABI (i.e. extern “C”)
Generators

- Generators are C++ programs that, when run, produce objects (.o, .obj) and C headers (.h) containing compiled pipelines.
- Applications `#include` generated header files declaring the functions, link to generated objects.
- Pipeline functions are declared with arguments corresponding to `Param` objects, including `ImageParams` in `buffer_t` objects.
 - Holds pointer, element size and strides of each dimension of an image.
 - Halide never assumes ownership of the memory a `buffer_t` points to.
Using Generators with Matlab

● Generators can also be used within Matlab (or Octave) via the mex library interface
● Halide pipeline compiled with `matlab` target feature defines a suitable `mexFunction` wrapper
 ○ Validates and converts `mxArray` to `buffer_t` (or scalar params)
● `mex_halide` Matlab function performs all the required steps to build a mex library from a source file containing a generator
Code!
Scheduling for locality

- So far, we’ve talked about some scheduling operators
 - vectorize, unroll, etc.
- We’ve also briefly discussed `compute_at`
- To significantly improve performance, we need to use `compute_at` to improve locality
Here is a simple two stage pipeline

```plaintext
f(x, y) = x + y;
g(x, y) = 2*f(x, y);
```
compute_root

\[f(x, y) = x + y; \]
\[g(x, y) = 2*f(x, y); \]
\[f.compute_root(); \]
\[g.compute_root(); \]

This means compute all of f, followed by all of g

Poor locality!
compute_root

f(x, y) = x + y;
g(x, y) = 2*f(x, y);
f.compute_root();
g.compute_root();

for f.y:
 for f.x:
 f[f.x,f.y] = f.x + f.y
for g.y:
 for g.x:
 g[g.x,g.y] = 2*f[g.x,g.y]
compute_at

\[f(x, y) = x + y; \]
\[g(x, y) = 2*f(x, y); \]
\[f.compute_at(g, y); \]
\[g.compute_root(); \]

“Compute f at each iteration of y when computing g”

All stages of a Func share the same compute_at location
```
compute_at

f(x, y) = x + y;   for g.y:
g(x, y) = 2*f(x, y); for g.x:
f.compute_at(g, y);  g[g.x,g.y] = 2*f[g.x,g.y]
g.compute_root();
```
compute_at

f(x, y) = x + y;
g(x, y) = 2*f(x, y);
f.compute_at(g, y);
g.compute_root();

for g.y:
 for f.x:
 f[f.x,g.y] = f.x + g.y
 for g.x:
 g[g.x,g.y] = 2*f[g.x,g.y]
compute_at

f(x, y) = x + y; for g.y:
g(x, y) = 2*f(x, y); for g.x:
f.compute_at(g, x); g[g.x,g.y] = 2*f[g.x,g.y]
g.compute_root();
compute_at

\[
f(x, y) = x + y;
g(x, y) = 2*f(x, y);
f.compute_at(g, x);
g.compute_root();
\]

for g.y:
for g.x:
\[
f[g.x, g.y] = g.x + g.y
\]
\[
g[g.x, g.y] = 2*f[g.x, g.y]
\]
IIR blur compute_root visualization

Legend:
- ImageParam
- Func
- Allocation
IIR blur locality schedule visualization

Blur y

Transpose
IIR blur locality schedule visualization

Blur y

Transpose
IIR blur locality schedule visualization

Blur y

Transpose
IIR blur locality schedule visualization
Code!